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Divisive Conditioning: 

Further Results on Dilation* 


Timothy E-lerronTi 
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Larry Wasserman 
Department of Statistics, Carnegie Mellon University 

Conditioning can make imprecise probabilities uniformly more imprecise. We call this 
effect "dilation". In a previous paper (1993), Seidenfeld and Wasserman established 
some basic results about dilation. In this paper we further investigate dilation on several 
models. In particular, we consider conditions under which dilation persists under mar- 
ginalization and we quantify the degree of dilation. We also show that dilationmanifests 
itself asymptotically in certain robust Bayesian models and we characterize the rate at 
which dilation occurs. 

1. Introduction. An important part of the Bayesian statistical lore is 
that increasing shared evidence leads (almost surely) to merging opin- 
ions, provided those opinions are not extremely discrepant to begin 
with. This is one way to rebut charges of excessive subjectivism in 
Bayesian epistemology: use interpersonal agreement to show that ob- 
jectivity results even though probability is "personal." In his classic 
discussion of Bayesian inference, Savage (1972, $3.6 and 4.6) illustrates 
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almost certain asymptotic consensus for finitely many investigators 
when the following assumptions hold: 

there are finitely many statistical hypotheses of interest; 
the investigators hold common likelihoods for these hypotheses 
given the shared data, and they agree that the data are i.i.d. 
(identically, independently distributed) given each statistical 
hypothesis; and 

(3) their priors agree which of these statistical hypotheses has 0 
prior probability. 

Blackwell and Dubins (1962) reduce the three assumptions to one: 
interpersonal agreement about which (infinite) data sets have 0 prior 
probability. Stated technically, the (finitely many) agents' priors are 
required to be mutually absolutely continuous (m.a.c.). However, the 
result about merging of posteriors does not require either the data be 
conditionally i.i.d. or that there be only finitely many hypotheses. 

What happens asymptotically, almost surely, is not always a useful 
guide to the short run. Seidenfeld and Wasserman (1993) address this 
question in the following way. Let M be a nonempty set of probability 
measures on a measurable space (a,A ). The lower probability P and 
the upper probabilityP are defined byP(A) = inf,,, P(A) andP(A) = 

sup,,, P(A). If f(B) > 0 define P(AIB) = inf,,, P(A1B) and P(AIB) = 

sup,,, P(A1B). A measurable partition'. weakly dilates the event A if 

P(AIB) 5 f(A) 5 P(A) 5 P(AIB) for all B E L?. (1) 

We say that L? dilates the event A if (1) holds with at least one of the 
dilates the event 

A if both outer inequalities in (1) are strict for all B E L?. 
Upper and lower probability theory is one alternative to strict 

Bayesian methodology. First, upper and lower probabilities provide a 
rigorous mathematical framework for studying sensitivity and robust- 
ness in classical and Bayesian inference (Berger 1984, 1985, 1990; Lav- 
ine 1991; Huber and Strassen 1973; Walley 1991; Wasserman and Ka- 
dane 1992). Second, they arise in group decision problems (Levi 1982; 
Seidenfeld, Kadane, and Schervish 1989). Third, they can be justified 
by an axiomatic approach to uncertainty that arises when the axioms 
of probability are weakened (Good 1952, Smith 1961, Kyburg 1961, 
1974, Levi 1974, Seidenfeld, Schervish and Kadane 1995, Walley 199 1). 
Fourth, sets of probabilities may result from incomplete or partial elic- 
itation. Finally, there is some evidence that certain physical phenomena 
may be described by lower and upper probabilities (Fine 1988, Walley 
and Fine 1982). 

If '.dilates A then observing B E '.is certain to increase the inde- 

'.strictly '..EBouter inequalities being strict for some 



terminacy of the observer's beliefs about A. Alternatively, M may rep- 
resent the beliefs of a set of observers; each P EM corresponds to one 
observer. In this case, observing B E L? increases the disagreement in 
the group about A. In either case, if L? dilates A then there is some 
question about whether the experiment consisting of observing B EL? 
is worthwhile. 

Seidenfeld and Wasserman (1993) showed that dilation is easily in- 
duced. Indeed, only very special classes of probabilities are immune to 
dilation. This paper is a continuation of that investigation. We begin 
with some propositions about dilation for &-contamination classes of 
probabilities. These serve as a springboard for $2-7, where we discuss 
parallel results for other classes of probabilities. 

Let P be a probability measure, let P be the set of all probability 
measures on Aand define the e-contamination neighborhood of P by 

where E E [0,1].This class is ubiquitous in frequentist and Bayesian 
robustness theory (Huber 1981; Berger 1984, 1990). It can be under- 
stood in several ways. It is a model of data contamination where, with 
probability ( 1  - E )  the intended statistical model P generates the data 
and with probability e any other probability law Q generates the data. 
Alternatively, as we note below, this model corresponds to a class of 
probabilities formed by fixing lower bounds on the probabilities of 
atomic events in the algebra 4Thus, it might be created by eliciting a 
set of "experts" for their probability judgments about the atoms of A 
and forming the convex closure of the lower probability bounds from 
this set. Yet another example is found in Waliey's (1996) "imprecise 
Dirichlet" model for inference from multinomial data. 

It follows that for A # 0 or a,P(A)  = ( 1  - e)P(A)and P(A) = ( 1  
- e)P(A) + e. Fix an event A such that 0 <P(A)  5 P(A) < 1.  Let L? 
be a finite, nontrivial partition for A by which we mean that 0 < P(B 
C7 A )  < P(A) and 0 < P(B C7 At) < P(AL)for all B E 8.Likewise, it 
is a simple calculation to verify that P(AIB) = ( 1  - &)P(AB)I((l-
e)P(B) + e) and that P ( A I B )= ( ( 1  - e)P(AB) + e)/((l - e)P(B) + 
e). As shown in Seidenfeld and Wasserman 1993, 

PROPOSITION 1: L? dilates A if and only if 
-eP(Ac)P(B)< P(AB) - P(A)P(B) 

< & P ( A ) P ( wfor all B E L?. (3) 

Note, in particular, that if A and B are nearly independent under P 
for all B E L?, then dilation occurs. Define the extent of dilation by 
A(A, L?) = min, , ,[(P(~l~)- P(A)) + @(A) - P(AIB))]. 

PROPOSITION 2: For the e-contamination model we have 
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A(A,4) 
 e(1 - &)P(B) 
( 1+e 

.-min= 
- &)P(B)' 

Note that A(A, l )  does not depend on the event A. Further, this quan- 

tity is maximized when e = J ~ I ( @ ( B , )+ 1 )  if B, is an element 

of lthat minimizes (4). 
To find out whether there is some partition that dilates an event A, 

apparently one must consider all possible partitions. Say that M has 
the binary dilation property if, whenever there exists a partition that 
dilates an event A there also exists a binary partition that dilates A. 
When this property holds we need only examine all binary partitions 
to see if dilation occurs. A partition @is a coarsening of the partition 
lif each C E @is a union of elements of 1 .  Say that M satisfies the 
coarsening property if, whenever a partition with three or more ele- 
ments ldilates A, there is a coarsening @of lsuch that @ dilates A 
and @has strictly smaller cardinality than 1 .  Note that the coarsening 
property implies the binary dilation property. When the coarsening 
property obtains for a model, it means that dilation in that model is 
not related to the complexity of the partition or experiment involved. 
Also, we have an interest in coarsening as it relates dilation to measures 
of association in the ever popular study of 2 by 2 contingency tables 
(see, for example, Corollary 2.12). 

If P is a probability on ( R ,A ) and l i s  a finite, measurablepartition, 
then P, denotes the marginal of P on the algebra generated by l Also, 
M, = {P,; P E M ) .  

PROPOSITION 3: The &-contamination class possesses the coars- 
ening property. 

When dilation does not occur, we might hope for the opposite, that 
some narrowing of the set of probabilities occurs. That is, it would be 
reassuring if there are some instances where the probabilities become 
more precise. Say that lconstricts A if 

E(A) 5 P(AIB) 5 P(AIB)5 P(A) for all B E ( 5 )  

with at least one of the outer inequalities being strict for some B. As it 
turns out, this never happens in the e-contamination model. 

PROPOSITION 4: For any A, if e > 0 then there is no l which 
constricts A. 

In light of the Blackwell-Dubins (1962)result, alluded to in the open- 
ing paragraph, it is relevant to inquire whether dilation is a phenom- 
enon that is mitigated asymptotically. Suppose that R is the parameter 
space for a statistical model and consider using a class of priors M for 



the parameter. &-contamination classes are popular for such purposes 
(see Berger 1984, 1985, 1990 and Berger and Berliner 1986). Specifi- 
cally, suppose that XI, -N(0, lln) and let M be an e-contaminated class 
of priors for H. Let P(AIX, = x,) = inf,,, P(AIX, = x,J, let 8 be the 
maximum likelihood estimator and let A, = [8 - a,,,8 + a,] where a ,  
> 0. Thus A, corresponds to the usual 1 - a level confidence interval 
estimate for H or, what amounts to the same thing, an interval estimate 
obtained by inverting on a family of unrejected classical point-null hy- 
potheses from tests whose observed significance levels are bounded be- 
low at a. It is also the usual credible region-a region whose posterior 
probability is bounded below at 1 - a+xcept for an asymptotically 
negligible error which depends on the prior. We say that A, asymptot- 
ically dilates if 

lim l'(A,IX,, = x,J = 0 a. s. 

as n -+ m. Otherwise, we say that A, is asymptotically dilation immune. 
PROPOSITION 5: Suppose that a ,  = {n- ' (C i-k log n))'I2 for some 

constants C and k > 0. If M is an e-contaminated model then A, is 
dilation immune if and only if k 2 1. 

The proof of this proposition follows from results in Pericchi and 
Walley 1991. The implication is that the usual credible regions of length 

0 (I/&) are not robust in the sense that they are asymptotically dilated. 
Regions of length 0 (J1og(n)/n) are needed to stop the lower bound 
from tending to 0. 

REMARK: Proposition 5 does not contradict the Blackwell-Dubins 
result for two reasons: the &-contamination model has more than fi-
nitely many extreme points and the extreme points include point masses 
which are not m.a.c. Our results in 56 show when asymptotic dilation 
of these credible regions occurs within a m.a.c. version of the model. 
Schervish and Seidenfeld (1990) provide other results about the as- 
ymptotic merging of posteriors in the case of infinitely many Bayesian 
opinions. 

It is interesting to observe that this latter result is related to the 
behavior of acceptance regions in Bayesian testing. Specifically, con- 
sider testing H,, : H = H,, versus HI : 0 # H,,. Following Jeffreys (1961, 
Ch. 5) we use a prior of the form Q = (1/2)6,, + (112) P where 6, is 
a point mass at 8, and P({Q,)) = 0. The Bayes factor BF is defined to 
be the ratio of posterior odds of H,,versus HI  to prior odds. It is easily 
shown that BF = L(H,) I J L(8) P(dH) where L(.) is the likelihood 
function. Suppose we reject H, if BF < c for some constant c. Although 
it is not standard practice to do so, we can consider inverting such a 
test to form a pseudo-confidence region. Let A be the set of all 0 not 
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rejected by such a test. It follows from the discussion in Jeffreys 1961 
(p. 248) that A = 8 2 0 (Jlog(n)/n). We see that dilation immune 
credible regions for the e-contaminated model have exactly the same 
form as regions from inverting a Jeffreys hypothesis test. For additional 
discussion of this idea, see $4 of Herron, Seidenfeld, and Wasserman 
1994. 

The remainder of this paper explores many of these issues for other 
classes. Sections 2-5 discuss existence and extent of dilation and the 
binary coarsening property for the following models: atomic, total- 
variation, Frechet classes and symmetric classes. In $6 we explore the 
asymptotics of dilation further. Concluding remarks are contained in 
37. Appendix 1 contains additional material related to the total varia- 
tion model studied in 33. Specifically, we give a partial proof for a more 
general version of Theorem 3.5. Appendix 2 shows how the coarsening 
results can be extended to infinite partitions. All proofs are contained 
in Appendix 3. 

2. Atomic Models. Let IR be a nonempty, finite set and let A be its 
power set. Say that M is an atomic lower and upper probability model 
(ALUP) if there exist functions P, y : IR -+ R such that 

(i) P(w) 5 P({w)) 5 y(w) for all co E IR, where P is a probability 
distribution, implies that P E M and 

(ii) for every w E IR, sup,,,P({w)) = y(co) and inf,,,P({co)) = 

P(o>. 

We say that M is generated (p, y). This is similar to the density 
bounded classes studied by Lavine (1991) except that he does not re- 
quire (ii). Though ALUP models generalize the class of e-contamina- 
tion models (as explained below), they are not as general as the class 
of upper and lower probability models on events in Adeveloped by 
C. A. B. Smith's unconditional pignic odds (1961) or Kyburg's (1974) 
intervals of "epistemological" probabilities and, a fortiori, not as gen- 
eral as the complete class of convex sets of probability distributions on 
Aused by Levi (1974, 1980). Nonetheless, we develop dilation results 
for ALUP models en route to a future study of convex sets of proba- 
bilities. 

Consider a discrete 2 x n atomically generated algebra, with {aUl 1 
5 j 5 n, i = 1 or 2) as its atoms, as follows: 4 = {0 < Paq5 P(aJ 
5 y,, < 11 1 5j r n and i = 1 or 2 and the y's and p's are constants}. 
The p's are the lower bounds for each of the atoms, and the y's are the 
upper bounds. We need to make sure that the upper and lower bounds 
given for an ALUP model are effective; e.g., that the given upper bound 



for atom a,, is determined by y,,, and not the lower bounds of the other 
atoms Ua,,,/3 ,,,, . . .). Hence, according to (ii), we stipulate that the 
following must hold: For all Pay there exists a P E Pj, such that P(a,) 
= Pa,i,and for all yay there exists a P E /$? such that P(a,) = yay. 

For the 2 x 2 case where the space of all probabilities can be rep- 
resented as a tetrahedron, the ALUP model's set of probabilities is, 
typically, an 8-sided polyhedron sitting in the tetrahedron with 4 hex-
agonal faces (the lower bounds) and 4 triangular faces (the upper 
bounds). The orientation of the 8-sided polyhedron is such that one 
hexagonal face and one triangular face are parallel to a given face of 
the tetrahedron, with the hexagonal face being closer to the tetrahedral 
face. 

REMARK: The ALUP model reduces to the &-contamination 
model when Pay = eP(A,) and yay = (1 - &)P(A,) + 8. Likewise, each 
&-contamination model is ALUP by the same constraints. 

2.1 Dilation Conditions for the ALUP Model. Define X to be the set 
of atoms {aJl 5 j 5 n and i = 1, 21, and let 4be the algebra over 
the atoms of X. Set A = U;2=,a ,  and h, = a,, U a% in this 2 x n atomic 
case. Also, define [ y J  = P(E) = y,) and WE] ={P E 4,; {P E 4,; 
P(E) = P,) where E is an event in Aand y,  and PI are, respectively, 
the maximum and minimum probability values for the event E, for 
probabilities in Pp,.Note that [y,] and WE]are closed, convex sets since 
they are supporting for the ALUP model. Theorem 2.1 and Corollary 
2.2 report some facts about extreme probability values for events and 
atoms they contain. Corollary 2.3 gives necessary and sufficient con- 
ditions for dilation in an ALUP model by giving separate conditions 
for dilation of the upper and lower probability values. 

THEOREM 2.1 : IJ'a, E E E A then [y,] fl[ y  ] f 0 and vI]n [P,,] 
# 0. 

COROLLARY 2.2: For all a, # a,, there exists P E /$? such that 
'(a,,) = Paii and P(a/<J = Yak,. 

COROLLARY 2.3: (a) R A )  < q ~ l b , )r f f h  - &a > 0. 

Y A  PAC 


(b) fiA) > AAlb,) ijf%
YA,  

- PA 
> 0. 

2.2 Coarsening in the ALUP Model. We keep the same 2 X n ALUP 
model that we had in the last subsection. The principal result of this 
subsection is the following theorem, which asserts that ALUP models 
have the coarsening property. 

THEOREM 2.4: Assume that for every j = I ,  . . . ,n n 2 3 we have 
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-P(AlbJ) < l'(A) 5 P(A) < P(~lb,); in other words the partition L? = 
{b,, . . . , b,) strictly dilates A. Then there exists some coarseningn' = 

{b:, . . . ,bk) strictly dilating A. 
As with the rest of the results, the proof is in Appendix 3. The proof 

makes use of several Lemmas which are recorded here for the interested 
reader. 

LEMMA 2.5: (Marginalization Property for ALUP Models) Let P 
be the ALUP model described above, and let E be an event in the 
algebra A of the model. Let XE = {DC X - E) U {E). Thus, the 
algebra 4 is generated by the atoms of XE which we define to be the 
coarsened subalgebra of 4 Finally, define PEas the set ofinducedprob- 
abilities over the algebra AE.Then PEis an ALUP model with constraints 
/3:, 5 P(a) 5 y: jor all atoms a E X,. 

We need a few definitions for the next three Lemmas. If @ = {EL) 
is a family of subsets of {b,, . . . , b,], then we say that @spans X if 
U g L= X We say that @spans X with focus b, if, in addition, for all 
EL# E, E @we have E, f l  EL= 0 or EL f l  EL = b,, and there exists 
EL# ELE @such that E, n E ,  = b,,. Also, we call @ a tiling of X if @ 
spans X and for all E, # E, E @we have ELf l  EL= 0. Finally, we 
define an event E as an upper (lower) dilator for A if P(A) < P(AIE) 
(P(A) > P(AIE)). 

LEMMA 2.6: Assume that the conditions of Theorem 2.4 hold. Let 
@ span X with focus b,. Then, (I) @ contains an upper dilator jor A. 
(2) 	@ contains a lower dilator for A. 

Define I9 = {b,, . . . ,bJ_,, bJ , ,, . . . ,b,) for j = 1, . . . ,n. 
LEMMA 2.7: Assume that the antecedent of Theorem 2.4 holds. 

Then, 
(I) At least one El is an upper dilator jor A. 
(2) At least one El is a lower dilator for A. 
LEMMA 2.8: Assume the antecedent of Theorem 2.4 holds but that 

the conclusion of the theorem is false. If @ = {E,,] is a tiling of X, where 
E,, = {b, b,) so that n is an even number, then 

(I) @contains at least one upper dilator for A. 
(2) @contains at least one lower dilator for A. 
We prove Theorem 2.4 by playing the following formal game: 

Define 9 = {E,,Il 5 i # j 5 n], and @ = ~ , q .We can think of @as 
forming a two dimensional table with rows being the 9,i = 1, . . . ,n. 
We label each E,, E @ as one of U, L, N, B depending upon whether 
the E, in question is an upper dilator but not a lower dilator, a lower 
dilator but not an upper dilator, neither an upper or lower dilator, or 
both an upper and a lower dilator, respectively. Notice that if some E, 
in our @is labeled B, we can construct the coarsening {b,, . . . , b,-,, 
b,, ,, . . . ,b,_,, b,, ,, . . . , b,, E,] which dilates A. Thus, Theorem 2.4 



would be proved. Hence, we only have left to show that we cannot 
construct an ALUP model such that +'has no E,'s in it with the label 
B. We shall do this by using Lemmas 2.6 and 2.8, which, translated 
into the game we are playing appear as: 

LEMMAS 2.6 and 2.8: 
r f  C = {E,) is a set of pairs El,= {b, b,) that spans X with jocus 6, 

or as a tiling of X, then either 
1) Some E,,E C is labeled B. 
2)  One E, E C is labeled U and another E,', E C is labeled L. 
We will assume that case 1) in the Lemmas never happens. Thus, 

each focused span of X or tiling of X places a restriction on the possible 
labellings that q c a n  contain. In fact, our task is made easier by the 
following Lemma. 

LEMMA 2.9: If there is a labeling of qpossible under the restrictions 
of Lemmas 2.6 and 2.8 when we have labels U, L, and N available, then 
there is a labeling of qpossible using only the labels U and L obeying 
the restrictions of 2.6 and 2.8. 

COROLLARY 2.10: Under the conditions of Theorem 2.4, there is 
a binary subpartition that strictly dilates A. 

PROOF. Iterate the theorem until m = 2. 

2.3 Extent of Dilatiorz in ALUP Models. If we have a probability 
measure P on our partition {b,, . . . ,b,], then we will. define 6, (A, b,) 
= P(A n b,) P(Ar n b;) - P(Ac n b,) P(A f l  b ) .  We can derive the 
following Lemma using this notation, and produce an interesting con-
nection between the extent of dilation and covariance in a corollary. 

LEMMA 2.11: A(A, L?) = min, 

where PI, E [ Y A l  fl [Y,,l n EPn2,1 '2nd 'vhere P2, E P A 1  n K,l n [YU2,l. 
COROLLARY 2.12: If'Pis a probability on an ALUP model, then 

6, (A, b,) = covariancek,, x,J, where X, is the characteristic function 

on event E. Hence, A(A, h') = mini) - C~V(X~,X, ,~)]  
Pzj(bj) ' 

3. The Total Variation Model. The Blackwell-Dubins (1962) result 
about the almost-sure asymptotic merging of two posterior distribu-
tions, based on increasing shared evidence, uses the total variation met-
ric, p(P, Q) = sup,,l P(A) - Q(A)I, to measure the differencebetween 
two distributions P and Q. This provides a conservative measure of 
agreement since when a sequence of probability distributions converges 
in total variation, it has uniform (rather than pointwise) convergence. 
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First we discuss characterizations of dilation for the total variation 
set of probabilities. This is a model M = {Q; y(P, Q)  5 e)  such that 
p(P, Q) = sup, IP(A) - Q(A)I where e is a fixed real between 0 and 1 
and P is a fixed probability distribution. Thus M consists of a focal 
distribution P and all Q's within a total variation distance e of Q. We 
also assume that P is internal meaning that P assigns positive mass to 
each atom in 4 

We obtain P(A) = max{P(A)- e, 0 )  and 

We also can derive analogous equations for the upper probabilities. In 
what follows we define 

dp(A,B)= P(AB) - P(A)P(B)and 
Sp(A, B) = P(AB)I(P(A)P(B))if P(A)P(B)> 0 and 
Sp(A, B) = 1 if P(A)P(B) = 0.  

3.1 Characterizations of Dilation for Total Variation Sets. In Seidenfeld 
and Wasserman 1993 the following Lemma was proved: 

LEMMA 3.1: {B, B) dilates A qf the  jollowing two conditions hold: 

(i) > max { -dp(A, B)IP(BC), d,(A, B)IP(B) ), 
and 

(ii) i f P ( A B )> E then we must have that e > -dp(A, B)IP(B), and 
i fP(AB)> e then we must have that E > dp (A,  B)IP(Br). 

Note that the Lemma only gives a characterization of dilation, not 
strict dilation. Also, we see that the Lemma breaks up the condition 
for dilation into four cases depending upon whether a probability in 
the set M can take the value zero on the events AB or A D .  

The following Lemma characterizes when the total variation set of 
probabilities M forces B to strictly dilate the event A. Lemma 3.2 is 
needed for the coarsening result which follows. 

LEMMA 3.2:B strictly dilates A $and only 8 (4  cases) 

I .  < min {P(A) ,  P(Ar))  when P(AB), P(AcB) < e 
2. 	P(AC)( 1  - Sp(ACBr))< e < P(A) when P(AB) < e 5 P(ArB) 
3. 	P(A)(l - S,(A, Be)) < e < P(AC) when P(AcB) < e 5 P(AB) 
4. 	e > max{P(Ac)(l- Sp(Ar, BC)), P(A)(l - S,(A, B ) ) )when e 5 

P(AB), P(AcB). 

3.2 Coarsening of Dilation in Total Variation Sets. The following two 
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Lemmas are used in the coarsening theorem, and they can both be 
proven in a straightforward manner. 

LEMMA 3.3: Fix a probability distribution P over an algebra g (R) ,  
and$x a real E between 0 and 1. Let M be a total variation set of prob- 
abilities based on P and e. IJ'Ais a subalgebra of e ( R ) , then de$ning 
M, = {Q,; Q E M ]  we get M, = {Q;p, (Q, P,) 5 F )  where P,is the 
restriction of P to algebra Aand p, is the total variation distance on the 
algebra 4. 

LEMMA 3.4: For apartition {B,,. . . ,B,,] of B we obtain 

I )  Sp(A, BJP(B,) = 1 if B is the entire probability space, and 
r =  l 

2)  Sp(A,B)= 2 Sp(A,B,)for any B. 
, = I  	 P(B) 

The desired coarsening result for the total variation set of proba- 
bilities is now presented. The theorem is proved assuming that M is 
sufficiently far from the edges of the simplex. Other cases are discussed 
in Appendix 1. 

THEOREM 3.5: Let M be a total variation neighborhood ofproba- 
bility distributions centered on P where F is$xed. Suppose that n , = 

{C,,  . . . , C,,) is a partition of R with n elements which strictly dilates 
the event A (n  r 3). For all i = 1 ,  . . . , n assume that P(ACi)and 
P(AcCI)r e. Then, there exists a binary subpartition {B, Bc) which di- 
lates A also. 

3.3 Extent of Dilation jor the Total Variation Set of Probabilities. By 
straightforward derivations using calculations performed in Lemma 
3.2, we can prove the following proposition: 

PROPOSITION 3.6: The extent of dilation jor the total variation 
model breaks into four cases: 

a. 	 If P(ABJ, P(AcBJ < e, then A(A, {B,))  = 1 - min{1, P(A) + 
e] + max{0, P(A) - e).  

b. 	 IfP(AB,) < e 5 P(AcBJthen, A(A, {B,))  = (P(AB,)+ e)IP(Bi) 
- (P(A)+ e - max{O, P(A) - el). 

c. 	 IfP(AcBJ< e 5 P(AB,)then, A(A, {B,])  = (P(AcBi)+ &)lP(Bi) 
- (P(Ac)+ e - max{0, P(A3 - 8 ) ) .  

d. 	 If e 5 P(ABJ, P(AcBJ then, A(A, {B,])  = 1 - P(B,). 

COROLLARY 3.7: A (A, {B,])  2 0 in a. and d. of Proposition 3.6. 
The condition for A(A, {B,))  2 0 in cases b and c may or may not be 
equivalent to the condition for Biddating A. 

As an example of a case of negative extent of dilation from case c. 
we take E = .2, 
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P(AB) = .69, P(ArB) = .01, P(AW = . l ,  and P(ArB.) = .2. Then, 
-P (A) = .59, P(AIB) = .70, P(A) = .99, and P(AIB) = 1.0 (rounded 
to two decimal places). 

4. Frechet Classes. If X and Y are random variables with distribution 
P, and P, respectively, then the Frechet class is defined to be the set 
of all joint probability measures for X and Y with the given marginals 
P, and P, (Rachev 1985). First we consider only the simplest of Frechet 
models, the set of probabilities of a finite partition with fixed marginals. 

Thus, we have Q = {AB,, ACBl, AB,, ACB2, . . . ,AcB,), and for some 
fixed r, ci E [0,1] i = 1, . . . ,n such that X?=, c, = 1 we let/ = {PIP(A) 
= rand P(BJ = c, i = 1 , .  . . ,n). 

4.1 Dilation Conditions for the Fixed Marginals Model. Strict dilation 
occurs often in this model as evidenced by Theorem 4.2. 

LEMMA 4.1 : 

max(0,r + ci - 1) - min {r, ci) 
-P(AIBJ = 9 P(AIB,) = 

Ci ci 

THEOREM 4.2: The partition L5' = {B,, . . . ,B,) strictly dilates A 
if and only ifr and all ofthe ci have values other than 0 or I .  

4.2 Coarsening of Dilation on the Fixed Marginals Model. 
THEOREM 4.3 Ifa partition B strictly dilates A, then any nontrivial 

coarsened subpartition B' of B also strictly dilates A. 
Regarding a more general Frechet class, we assert the following re- 

sult: Let F, and F, each be a c.d.f. on the interval (0,s). Following 
Dall'Aglio 1972, define the two dimensional Frechet class on F, and 
F, by: T(F,,F,) is the set of joint distribution functions for X and Y 
with marginals F, and F, for X and Y respectively. Let A be the event 
(a,b) x (O,l), where 0 < a < b < 1, and let B be the event (0,s) x 
(c,d), where 0 < c < d < 1. Assume that neither A nor B is empty of 
probability mass or contains all the probability mass. Then: 

PROPOSITION 4.4: L5' dilates A. 
As with the fixed margins model, we think that coarsenings to finite 

nontrivial subpartitions will preserve dilation. 

4.3. Extent of Dilation for the Fixed Marginals Model. Simple cal- 
culations based on Lemma 4.1 yield: 

PROPOSITION 4.5: A(A, n) = mini 
min {r, 1 -r, ci, 1 -ci} 


ci 




COROLLARY 4.6: A(A, n)> 0 unless some r, c, E (0,l) 

5. Symmetric Classes. For this section R = [0,1], 4 s  the class ofBorel 
subsets of O and y is Lebesgue measure. We are concerned with neigh- 
borhoods o h .  Many classes of probabilities are neighborhoods of some 
probability measure and, by an appropriate transformation, can be 
considered neighborhoods of y. All ordinary neighborhoods ofy have 
some common structure (Wasserman and Kadane 1992) which we now 
describe. 

Two density functions f and g are equimeasurable, denoted by f -
g, if y Cf > t) = y(g > t) for all t, where Cf > t) = {(a E R;f(o) > t ). 
GivenJI there is a unique, nonincreasing right continuous function f* 
and a unique, nondecreasing right continuous function f, such that f 
- f* and f - f,. These are called, respectively, the decreasing and 
increasing rearrangements of$ Let ACf) = {g;g -f )  be the orbit of 
J: Let u(o) = 1 for all co. We call m a symmetric neighborhood of u if 
f E m, g -f implies that g E m. (Formally, each density should be 
replaced by an equivalence class of densities that represent the same 
probability measure; we shall not make such a distinction here.) m is 
a density ratio class (DeRobertis and Hartigan 1981) if there is a k 2 
1 such that 

ess sup g 
k) .

ess inf g 

(Recall the ess supf (co) is the supremum of all real numbers a such that 
y({o; f(o) > a)) > 0 and ess inf is defined similarly.) In Seidenfeld 
and Wasserman 1993 it was shown that a symmetric neighborhood is 
immune to dilation if and only if its weak convex closure is a density 
ratio class. This does not tell us, however, for a given A whether there 
is a partition that dilates A. Now we take a closer look at these neigh- 
borhoods. 

- 5.1 Conditions for Dilation and the Binary Dilation Property. Let 
P(A) = and P(A) = inffE,z S,4f(co)~(do)'supfEnz S,4f(co)~(dco) Let (A)n 
= V; S,4f(o)y(do) = P(A)) and ( 4 ,  = V; SJ(o)y(do) = P(A)). It 
can be shown that (A), and (A), are nonempty. We begin with a Lemma 
that will be useful for further calculations; the proof involves straight- 
forward algebra and is omitted. 

LEMMA 5.1.1 : Let f be a density and consider real numbers 0 = a, 
< a, < a, < a, < a, = 1. Let F(co) = f*(t)y(dt) and suppose that 
F(a,) - F(a,- ,) > 0, i = 1,2,3,4. Then, F(a,)l(F(a,) + ?'(a,) - F(a,) 5 
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F(a,) if and only if (F(a,) - F(a,))l(F(a,) - F(a,)) 2 (flu,) -
F(a,))I(F(a2) - F(a1)). 

Let A Ed b e  such that 0 <p(A) < 1 .  A partition L is nontrivial if 
0 < ,u(A f l  B) < ,u(A) and 0 < ,u(Ac n B) < ,u(Ac)for all B E L. We 
say that L is balanced if 

We say that L is very balanced if ,u(A f l  B) = ,u(A f l  B')  and ,u(Ac fl 
B) = ,u(Ac fl B r )for all B, Br E L. 

LEMMA 5.1.2: I f L  is balanced then 1weakly dilates A. 
LEMMA 5.1.3: There exists a binarypartition that weakly dilates A. 
For every A and every f define 

ess supdess sup, J 
" A ' f )  = ess infJ ess inf,,l' 

Now define +,(A) = supfE(,,,+ ( A f )and +,(A) = + ( A f  ).NoteS U P ~ ~ ~ ( A ) O  

that +,(A)+O(A) 1 1 .  
LEMMA 5.1.4: If+,(A)+O(A) > 1 then A has a strict, binary, dilator. 
The converse of Lemma 5.1.4 is not true in general. To see this, 

consider the following example. Let f ( o )  = 112 on A = [O, 1/21 and 
f(co) = 312 on Ac. Let B = [O, 1/41 U [112, 3/41 and define g(o)  = 1116 
on A f l  B, g (o )  = 3116 + E on A fl Bc and g(co) = 318 - ~ 1 2on Ac 
where E < 318. Let m consist of all rearrangements off and g. Then 
(A) ,  = V) and (A) ,  = (f*)so that +,(A)+,(A) = 1.  But P(AIB) = 

P(AIB3 = (7 - 8r)-I < P(A)  = 114 and P(AIB)= P(AIBC)= (6 -
8~)1(7- 88) > P(A) = 314 so that strict dilation occurs. 

There is, however, a converse under some stronger conditions. We 
say that P is 2-alternating if P(A U B) 5 P(A) + P(B) - P ( A  f l  B). 
We say that m is I-closed ( I  for indicator functions) if P(A) 5 P(A)for 
all A E dimplies that dPldp E M. 

LEMMA 5.1.5: Suppose that P is 2-alternating and m is I-closed. 
Then A has a strict dilator if and only if+,(A)+O(A) > 1 .  

In addition, we have the following fact about these classes. 
LEMMA 5.1.6: Suppose that P is 2-alternating and that m is I-closed 

Then constriction never occurs. 

5.2. Extent of Dilation. We shall assume that 

for some c and C. Define f, = f*(O)(f*(O) + f*(l-))-I and f "  = 



f*(O)Cf*(O) + f*(I-)} - I  = f*(1 -)Cf*(l-) + f*(O)} ' .  Let m, = i n k ,  
f ,and mn = sup,,,,? f ". It follows that 0 < m, < 112 < mu < 1. 

LEMMA 5.2.1: Let r be the set of all nontrivial partitions. Then, 

infmax P(A1B) = m, 
B € l  BEB 

and 

A measure of the extent of lower dilation is sup,,, min,,,p(A) -
-P(AIB)] = P(A) - inf,,, max,,P(AIB) = f(A) - mu. Similarly, a 

-


measure of the extent of upper dilation is mu - P(A). 


6. Remarks on Asymptotic Dilation. As noted in the Introduction, when 
a set of priors is used for Bayesian inference, the usual credible regions 
of size O(n-'I2) have the property that the lower posterior probability 
tends to 0. This may be viewed as a type of asymptotic dilation. We 
observed that regions of the form X,,t a, with a, = {n-'(C + k log 
n)}I1"id not dilate if k 2 1. On the other hand, the usual regions 
correspond to k = 0. This raises the following question: is it possible 
to have sets of priors where the dilation immune regions are in between 
these two extremes (k = 0 and k = I)? The answer is yes. The rest of 
this section explores some intermediate cases. 

Let O = (0, 1); any bounded, open subset of the real line will do. 
Let p be Lebesgue measure which we regard as the base prior. Let M 
= (1 - ~ ) p+ ~ S w h e r e0 < E < 1 and S i s  a symmetric class. Taking 
S t o  be all point masses gives the usual contamination neighborhood. 
Taking S= {p} gives a singleton set corresponding to the often used 
flat prior. 

Let X,IO - N(B, llrz) and let A ,  = X, k a, where a, > 0 and a, = 
o(1). (Extensions to non-normal likelihoods are straightforward as long 
as we work on a bounded region and as long as the usual conditions 
are assumed to achieve asymptotic normality.) Asymptotic dilation 
means that 

limn P(A,,IX, = x,) = 0 almost surely. (10) 

The next two Lemmas pin down two extreme cases. 
LEMMA 6.1 : If a, = o(n- Il2) then for any symmetric 2?,A, asymp- 

totically dilates. 
The next Lemma is an easy consequence of the results in Walley and 

Pericchi 1991 and the proof is omitted. 
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LEMMA 6.2: Ifa, = { n  '(C + log n))lU. Then, for any symmetric 
SA, is asymptotically dilation immune. 

Now we construct classes with asymptotic behavior in between these 
two extremes. In light of the previous two Lemmas we assume that 

For a E (0, 1) let pa(@ = (1 - a)&,. Let S,be all rearrangements of 
p,. Now we establish the rate of cc, needed to avoid dilation for given a. 

To begin, we first establish the probability measure that minimizes 
P(AnIXn = xn). 

LEMMA 6.3: Without loss of generality, assume that x ,  2 112. Also 
assume that n is large enough so that x,, + a, < 1. Then, P(A,Ix, = 
x,) = J(A,IX, = x,) where 

and the density r, is defined by 

! 
(1 - a)-1r,t(8)= 

(1 -co-2ccX)--a i f co<2xn- 1 
(2(x - o - a,J)-a if2x,, - 1 s o < x , ,  - a, 
(1-21x-col)-. i f x , - a , S o < x , + a ,  
(2(co - x, - a,))-, i f x ,  + a ,  5 c o s  1. 

LEMMA 6.4: Assuming ( l l ) ,asymptotic dilation occurs ifccnd only if 

lim I L,(%)r,(B)dQ< a a.s. 
(12) 

where, 

is the likelihood function. 
LEMMA 6.5: If 

cc; + kcc,n 'I2
inf lim < a 
PO log nln 

then ccsymptotic dilation occurs. 
THEOREM 6.6: Let a, = {n-'(C + d log n)}'I2 for constants C > 

0 and d. Asymptotic dilation occurs if and only ifd < a. 
REMARK: The symmetry of S i s  not crucial. What matters is the 

rate at which the densities in the class become unbounded. In psrtic- 
ular, if S i s  a set of uniformly-bounded densities then cc, = CIJn will 
yield a dilation immune region. 
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7. Concluding Remarks. 
7.1 Summary. Beginning in $1 with the &-contaminated model, M = 

(1 - E)P + rQ where P is a focal probability and Q is an arbitrary 
probability, we emphasized the following four aspects of dilation: 

(1) The quantity B E L!? dilates event A if and only if A and B are 
nearly independent under the focal distribution P. 

(2) The extent to which B dilates A depends only on E and P(B). 
Parenthetically, the antithesis of dilation, called "constriction," 
does not obtain for this model. 

(3) If B E k dilates A, then some binary partition obtained by 
coarsening B also dilates A. 

(4) 	With an E-contaminated class of priors, the asymptotic dilation 
for likelihood-based interval estimates of a normal mean based 
on i.i.d. data is related to Jeffreys' rule for converting (Bayes- 
ian) posterior probabilities from hypothesis testing into (Clas- 
sical) significance levels. 

In $2 we explored the so-called ALUP generalization of the &-con- 
tamination model. An E-contamination model is recovered by fixing 
the lower probabilities for each atom of the algebra ff. The ALUP 
model results from specifying both lower and upper probabilities for 
each atom. We provide parallel dilation results for aspects (1)-(3) in 
ALUP models, including characterization of the extent of dilation in 
terms of covariance. 

In $3 we examined the Total Variation model, again, for the purpose 
of producing parallels to (1)-(3). The "coarsening" result, (3), was es- 
tablished for what we call the "uniform condition" case. (We conjec- 
ture that the result obtains for the remaining "nonuniform" case too.) 

In $4 we considered the Frechet classes, defined by fixing the mar- 
ginal distributions for a pair of random variables. Counterparts of (1)- 
(3) were obtained straightforwardly for the fixed margins models on a 
finite algebra. In particular, regarding (3), strict dilation is preserved 
under all nontrivial coarsenings. 

In $5 we shifted attention to models that are symmetric neighbor- 
hoods of a distribution on Bore1 subsets of [0,1]. (Assuming that dis- 
tribution is dominated by Lebesgue measure, then, without loss of gen- 
erality we are able to work with neighborhoods of the uniform 
distribution.) Again, we provide counterparts to results (1)-(3). 

In $6, we attended to problems involving asymptotic dilation for the 
usual credible regions of a parameter, based on a variant of the E-

contamination model for the priors. We showed how the rate at which 
the interval estimates shrink determines, for a given model, whether or 
not asymptotic dilation occurs. In a dual form, given a rate for shrink- 
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ing credible intervals (as a function of sample size), we characterized 
which models for the priors will experience asymptotic dilation. 

7.2 Open questions. Several related issues about dilation strike us as 
worthy of continued investigation. First, the (binary) coarsening results 
are obtained by rather different methods, depending upon the model. 
Is there a unified approach to solving this problem? We do not know 
even if there is a model where the coarsening result fails! In 35 we saw 
that the 2-alternating condition played a role, as is common in the 
theory of upper and lower probabilities generally. Is there a useful 
explanation for this connection? 

Last, the asymptotic results in section 6 suggest that robust credible 
regions in Bayesian inference will shrink at a slower than usual rate. 
Except in the works of Pericchi and Walley (199 1) and Jeffreys (1961, 
Ch. 5)-based on our inversion on Jeffreys's hypothesis tests-we have 
not seen any discussion of this phenomenon before. In light of dilation, 
we think that the asymptotics of robust Bayesian inference deserve 
further scrutiny. 

APPENDIXES 

Appendix 1 discusses some technical issues left over from 53.2. Appendix 
2 deals with extensions of $2, 3, and 4 for countable partitions. 

Appendix 1 
Further Results on Coarsening of Dilation in Total Variation Sets 

In 53.2 we proved the coarsening result for total variation sets under re- 
strictive conditions. Some other cases are presented here. 

As before, we assume that we are given a partition z,= {C,, C,, . . . , C,,} 
which dilates the event A such that no coarsening {B,, B,, . . . , B,,,} of z, 
dilates A. 

CASE 1: For some i, j E (1, . . . , n} such that i is not equal to j we have 
P(A(C, U C,)) < E and P(Ac(C, U C,)) < E .  

The inequalities imply that P(ACi), P(ACj), P(AcCi) and P(AcC,) are all < 
E .  Hence, since z,strictly dilates A it must be that P(A), P(A3 r E by Lemma 
3.2. But the assumptions of case 1 and the previous equations, by using Lemma 
3.2 again, imply that the subpartition n, = { C,, C,, . . . ,C i,, Ci+,, . . . ,C ,,, 
Cj+,,. . . , C,, C, U C,} also dilates A - a contradiction. 

CASE 2: For all i, j = 1, .  . . , n we have P(AC,), P(AC,), P(AcCi) and 
P(AcC,) r E .  

This case was proved in $3.2. 
CASE 3: For all i, j E { I ,  . . . ,n} where i # j we have P(ACi), P(AcC,) < 

E and P(A(Ci U C,)), P(Ac(CiU C,)) r E. 



It is not the case that any binary coarsening, z,, will strictly dilate A under 
the assumption of Case 3. For a counterexample we take the partition {C,, 
C,, C,} such that P(ACl) = 0.05 and the five other atoms have probability 
0.19. One can check that while TC, does not strictly dilate strictly dilates A, TC,, 

A (check by using Lemma 3.2). 
However, we now show that every partition TC, strictly dilating A has some 

strictly dilating coarsening using a very different technique than the combi- 
natorial approach used for Case 2 of this proof. The main idea is to use our 
special assumptions of Case 3 to show that the probability has to be spread 
out very evenly over the atoms. Then we find that such a relatively uniform 
distribution satisfies the equations in Lemma 3.2 (else we get a contradiction). 

Using the assumptions P(A(Ci U C,)) 2 e and P(Ac(C, U C,)) 2 E we see 
that case 4 of Lemma 3.2 applies. Hence, we can straightforwardly calculate 
the following strict dilation equivalences: 

If Sp(A,Ci U G)> 1 then C, U C, strictly dilates A iff 

IfS,(A, Ci U C,) < 1 then Ci U C,.strictly dilates A iff 

First, we want to list two facts about the restrictions Case 3 places on the 
values of atoms in our current partition. Let ai = P(ACi) and a; = P(AcCi) 

FACT 1: I f B  = Uk,,AC, or B = UkEQACCk , n}for some Q C { I , .  . . 
such that lQl 2 3, then P(B) 2 : l ~ l .  

FACT 2: :5 P(A) < 
Fact 1 holds because the minimum value for each a,  i E Q, is :e. Otherwise, 

if 6 = i e  - a,> 0, then ol, 2 :E + S for all j # i, j E Q to meet the requirement 
that a, + a; 2 e. Then, P(B) = C,,, a, will be some positive multiple of 6 
greater than it might be if ai = 

Fact 2 holds by using Fact 1 on Q = (1, . . . , n) and remembering that 
each ai< e by assumption in Case 3. 

Now we proceed to prove coarsening in Case 3 by splitting our work into 
two subcases, taking the easier case first. We assume that there is no coarsening 
of our {C,) partition which dilates A. 

n is even: We assume that the inequalities (14) fail, hence "2  e" holds 
instead of "< E" in (14). Add together the values on each respective side of 
these inequalities, whichever case holds, for pairs C, U C,, C, U C,, . . . C,_,  
U C,. After some algebra we end up with (using that C,, . . . , C, is a partition): 

[(ai + ai+,,J- ( E L 1  ak) (ai + at+^ + a: + a:+1)1 
SpfA.C,UC,4 1)>1, i odd 

- C. [(ai + ai+l) - ( E L  
Sr(A,C,UC, I 1)<1, i odd 
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Note that here, as in Case 2 of this theorem, we ignore the possibility that 
some Sp(A, C, U C,) = 1 because, if it happens, then the partition {C,U C,, 
(C,U C,)<)is a binary coarsening dilating A. Also note that the requirement 
that S,(A, C, U CJ) > 1 is identical to saying that the values in the square 
brackets in the first big sum of ( 15) is positive. 

What we do now is show that substituting the highest allowable numbers 
into the right hand side of (15)is not enough to satisfy ( 15). Using Fact 1 and 
remembering that 2.5 > a, + a,,, 2 e, we claim that the following equation 
is sufficient to derive a contradiction from: 

where y = P(A),p = l{klk odd and S p  (A, C, U C,,,) > 1 ) I ,  and q = l{lclk 

odd and Sp(A, C,  U C,,,) < 1)l. Note that p + q = -. 
n 

Also, p, q 2 1 since
2 

otherwise, using Lemma 3.4, the entire probability space would not be inde- 
pendent of itself. 

We see that [2e - y ( 3 ~ ) ]is maximal in (15)'sfirst square bracket by assum- 
ing that a, and a,, , are very close to E and then a; + a;+]is, at minimum, e, 
giving us y ( 3 ~ )is the second term. We take the order of terms to maximize 
that we do because Fact 2 tells us that y is between 113 and 213, making it 
more worthwhile to maximize the term not multiplied by y. 

Similarly, we find that the second square bracket formula in (15) is mini- 
mized by the second square bracket in (16).Also, we see that we can replace 
the big sums in (15)by multiplication by p and q because the values in each 
pair C, U might be independent of each other. Finally, we replace the "5" 

in (15)by a "<" in 16 since a, and a,,, can only be made close to e. 
We now want to maximize the right hand side of (16)by picking the best 

possible values for p and y. We do this by taking derivatives with respect to 
y and p and seeing how each can contribute to the maximum value of (16).It 

n-2 1
turns out that -= p and y = - are the optimal values. Substituting these 

2 3 
values into (16)and doing some algebra gives n - 2 > n - 2. 

n is odd: In the n even subcase, we did not use a joint restriction on the 
values of y and p which we will need in order to derive a contradiction in the 
present subcase. Otherwise the proof is similar, and we will skim over elements 
of the proof which do not change much. 

Again, we assume that the inequality in (14)fails for all pairs C, U C' As 
in the n even subcase, add together the resulting inequalities for n - 1 disjoint 
pairs, skipping some arbitrary element, say CJ-this produces an inequality 
similar to (15). Then repeat this process for each C, and add all of those 
inequalities similar to (15)together. We end up with: 
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2 [(a; + a,) - (C;=l o?,) (a; + a, + a: + a;)] 
l = 1  Sp(A,CUC,j>I.  i , , f l  

where the indexes i and j make the inner sum cover each C ,  once except for 
C,. 

Trying to maximize the values to make (17) true leads us as before to the 
inequality 

where p + q = -
n-1 

with p, q 2 0.
2 

We now compute the aforementioned relation between the quantities p and 
y. We assume that we are given p and want to calculate the maximum value 
for y that p allows. Note that we do not need to go back and calculate (18) 
again because no variation in the value y makes it worthwhile to change the 
maximal values of the at's or ay's which give us that inequality. 

Using the values for the a , '~and af's in the calculation of (18) (as displayed 
in subcase n even), we find that 

Solving this as a function of p and n gives us 

which means that the greater p is, the closer y must approach 213 for large 
n-something we did not need to use in the n even subcase. 

n - 1
Substituting this y (as well as q = -- p) into (18) allows us to com- 

2 
n - 1

pute a derivative in terms of p only. We find that the value p = -max-
2 

imizes (18) and by using this value in the inequality we derive: 

which is false for n 2 3. RAA. 
CASE 4: This case is a mixture of the conditions we used in Cases 2 and 

3, as well as where half of the condition of Case 1 might hold. We conjecture 
that coarsening works in this hybrid case also, but the proof seems to be a 
very difficult one requiring inequalities to be derived for contradictions as in 
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Case 3, but without having the luxury of uniformity of conditions on the size 
of atoms and pairs of atoms relative to epsilon. 

Appendix 2 
Coarsening over Countable Partitions 

The coarsening results we have derived (thus far) in this and a previous 
paper (Seidenfeld and Wasserman 1993) for the &-contamination model, the 
ALUP model, the total variation model, and the fixed-marginals model have 
all criticallv used that the vartition coarsened over has been discrete and finite. 
We now show that a coarsening result applies to the abovementioned models 
with countable, discrete partitions. We first consider the case where we have 
a countable, discrete vartition of the &-contamination model. We will derive 
the coarsening result for this model and then modify the proof as needed for 
the total variation, ALUP, and fixed-marginals models. In this subsection, the 
symbol N stands for the set of natural numbers. 

We are given atoms a, for i = 1, 2 and j E N such that B, = a,, U aZi and 
A = UjE,,,u,. We also are given a probability distribution such that P(a,) > 0 
for all i and j. We define a, = P(U,,,,,u,), a,' = P(U,,,+zzj), and a, = P(a,). 
For the model we are working in, the strict dilation conditions can be written 
as: 

If6 (A, B) 2 0 then B dilates A iff 6 (A, B) 
< &a,(l - E (aIa(m)) + ~2u(rn))) (19) 

mEN 

and 

If6 (A, B) < 0 then B dilates A iff -6(A, B) 
< (1 - E (alo(rn)+ ah(m))) (20) 

n z t N  

where we define 6(A, B) = (C ,*,, a,,,,)a,, - (C,,Naz,(m,)a, such that B = 

U,,,,,B,,,, for some index sequence a(m) (where the sequence has a finite or 
countable range). 

THEOREM A2.1: If the E-contamination model with countable partition z' 
dilates A, then there exists a$nite subpartition 71 of z' such that 71 dilates A 
also. 

COROLLARY A2.2: If the E-contamination model with countable partition 
z' dilates A, then there exists a binary subpartition z of z' such that 71 dilates 
A also. 

The corollary is proved using Theorem A2.1 and Theorem 3.1 of Seidenfeld 
and Wassennan 1993 where it is shown that every finite dilating partition has 
a binary coarsening which also dilates. 

PROOF of A2.1: We will try to find an index sequence a(m) of natural 
numbers such that 

1) there exists an n such that a(n + i) = a(n) + i for all i E N, and 
2) {B = UmE,B,,,,} U {Bili E N - {a(m)lm EN}} is a subpartition dilating 

A. 
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W e  look at B, to find this index sequence. I f  6(A, B,) = 0 then {B, ,B;} 
dilates A by (19)  and (20)and, thus, we are done. I f  6(A,B,) # 0,then without 
loss o f  generality assume that 6(A, B,) > 0. 

W e  wish to choose a number q such that a(1) = 1 and a(m + 1 )  = q + 
m - 1 and such that 6(A, B) > 0 in the new partition o f  2). Note that 1 )  is 
already satisfied by the index sequence we selected. Thus, we need to see that 
the dilation condition for B in 2) holds: 

Expanding the left hand side and separating out one right hand side term we 
get: 

This inequality is equivalent to: 

Since B, o f  the original partition dilates A, there exists, by (19) ,  a positive E ,  

such that 6(A,B,) = &aA(l- a, ,  - a,,) - E , .  W e  then transformthe previous 
inequality into: 

In (21)the second term on the left hand side is negative and (&aA+ a,,) < 1, 
thus we only need to check that we can choose q such that (C,,, a,,+,-,) < 
8,. W e  can always find such a q because the sequence {a,),,, converges. 

Hence, we can collapse a tail sum o f  B,+;s (condition 1 )  ) with B, in the 
original partition to obtain a finite subpartition which dilates A (condition 
2 ) ) .

Our remaining task is to say how to modify Theorem A2.1 (and thus Cor-
ollary A2.2) so that the countable to finite coarsening given in the proof o f  
A2.1 works for ALUP, total variation, and fixed-marginmodels. 

W e  consider the ALUP model countable partition coarsening. Using the 
notation from $2o f  this paper, we recall that the dilation conditionsreplacing 
those o f  (19)and (20)are: 

A is strictly dilated by B = UmENB,,,,,i f f  

We first need to prove a Lemma in order to justify A2.1 for the ALUP model. 
LEMMA A2.3 For an event Eon the countablepartitionin the ALUP model, 

Po 2 Po-,, (hence,y, 2 y,_,J when a, E E and l? is not empty. 
PROOF o f  A2.3: Assume the Lemma is false:P,_,y -- P, = 8 > 0 for some 
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E, some i j .  W e  select probability p' E vL'-aJand by Theorem 2.1 we can 
select a probability p E [PA nk,)](theproof o fTheorem2.1 works even when 
E contains an infinite number o f  atoms). By our assumptions we have that 
pt(aJ p(a,) and pf(E - a,) = p(E - ad + p(aJ + e. The latter equation 
shows that there exists k and 1 such that pt(a,J = p(a,,) + E ,  where a,, E E 
- a, and E ,  > 0. However, the former inequality implies that the additional 
mass that E - a, has in p' but not inp must come from B, not a,, i fwe were 
to try to create pi from p. Hence, there must exist some r and s with a,.,E E' 
such that p(a,,) I= pr(a,,) + e,. But we can now create a new probability p" in 
our given ALUP model from p' just by moving min {el,E,} mass from a,, to 
a,. But then,p"(E - a,) <p'(E - a,), which contradicts our choice o fp ' .  

From the dilation conditions for the ALUP model we can see that in order 
to keep the left-hand side o f  the inequalities positive when coarsening B, with 
a tail sum of  B,'s, we only need be able to choose a q such that, when B = B, 
u Bq U Bq+,U . . . 2 f i n ,  - PAn,,) Y n c  < Y n c n ~ ~and (Pam, - Pacn,,)~a < 
y,,,,. In other words, we do not expect any help from y,,,,or y,,, other than 
that they are greater than y,,,,, or y,,,,, respectively, by Lemma A2.3. Thus, 
we only need to prove: 

CLAIM:There exists,for any e >0, a q such that PA,, - PA,,, < E (likewise 
for Ac). 

PROOF: First, we note that lim,,,@o,q = 0. Then, take any p E ~ o , , ]and 
pick a q such that p(A n (B, U B, U B,+ , U . . .)) < p(A n B,) + e. By 
definition it must be that PA,,,,,,,,, ., <p(A n (B, U B, U B,+,U . . .)) < 
p ( ~n B,) + E. 

Thus, we have shown how to prove the equivalent o f  Theorem A2.1 for 
the ALUP model with an infinite countable partition. 

The modification o f  A2.1 for the total variations case is quite simple be-
cause it uses the same idea as Case 1 of  the coarsening proof found in Ap-
pendix 1. Since the probability o f  the entire space is 1 ,  we can find some q E 
N such that P(B, U By+,U B,+, U . . .) < E. This certainly implies that 
P(ABq+i),P(AcB,+,)< e for all i E N. By assuming that the infinite partition 
dilates A, we see by Lemma 3.2 case a) that P(A),P(A3 > E. However, this 
last inequality ensures that the event B = Um,,,Bq+,dilates A also, again 
by Lemma 3.2 case a). Hence the finite partition {B,,B,, B,, . . . , B,_,,B} 
dilates A. 

Finally, to prove the analogue o f  A2.1 for the fixed marginals model, we 
use any nontrivial, proper coarsening o f  the countable partition to a finite 
partition because the dilation conditions are easy to satisfy. The proof o f  
coarsening here is the same as the proof for Theorem 4.3. 

Appendix 3 
Proof o f  Results 

PROOF OF PROPOSITION4: 
Equation (5) implies that @(AIB) - z (A) )  + @(A) - P(AIB))2 0 with 

strict inequality for some B. This implies, after some algebra, that 
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which implies P(B) 2 1. 
PROOFOF THEOREM2.1: 
We argue indirectly for [y,] n [ y J  f. 0. Assume that max,,,, P(a,) = yay -

6 where 6 > 0. Let q* E [y,] such that q*(a,,) = ya,/ - 6. One of the following 
cases occurs: 

(i) There exists some {a,,) E E such that q* (a,) # Pal,. Then we can shift 
some of the probability mass from a,, to a,, without adding mass to event E, 
thereby contradicting the claim that y,,, - 6 is the maximum of a, over [y,]. 

(ii) If for all {a,,) E E we have that q* (ak,) = /I,,,, then we have a contra-
diction with the requirement that max,, P(a,) = yU2,because getting any mass 
for a, would involve getting it from some a,, EE thereby raising the proba-
bility for E past its maximum of y,. 

The argument for PE and PC,,/runs parallel to the one above. 
PROOFOF COROLLARY2.2: 
Let E = X - {a,). Then for all q E [y,] we have q(a,) = /Iagsince B = 

{a,). Then by Theorem 2.1 we see that there exists some q* E [y,] n [y,J 
which completes the corollary. 

PROOFOF COROLLARY2.3: 

(a) P(A) = 1 - /IAc by definition, and P(~lb,)= by Corollary 2.2. 
Yo,, 

Then, we just compute the asserted result. Case (b) is similar. 
PROOFOF LEMMA2.5: 
We just need to set = min,, C,,, P(a), y k  = max, C,,, P(a), and for all 

a E = /I, and y: = yo. It is easy to check that PEis an ALUP model if P 
is one. 

PROOFOF LEMMA2.6: 
We will prove (1) by assuming that @contains no upper dilator and by 

deriving a contradiction ((2) is similar). Corollary 2.3 tells us that, if @contains 
no upper dilator, 

By Theorem 2.1 we may choose PA E [y,] n [y,,,]. When b, E E,, choose 
P 3 , ,  E [ y A n E ]  n [y,,,l. Otherwise, when b, E E:, we let P3,,  E [ y A n E ]  be 
arbitrary. 

By definition of [ y A n E ]  we have 

Let c + 1 be the number of EiE @such that b ,  E E, (c 2 1 by definition of 
a focused span). Then we compute: 
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In (24),the first equation sign comes from the definition of the P3,,'s. The r 
in (24)comes from (23).Finally, the last equality sign in (24)comes from the 
definition of y,. 

By similar reasoning, we can derive an inequality for the lower ALUP 
bounds as: 

Using (24)and (25)we can derive that 

The final inequality occurs because we assumed that h , is an upper dilator for 
A. To obtain a contradiction we note that if we take the inequalities of (22) 
and sum them over all E, E then, as no E, is an upper dilator, the result is 
a formula which is identical to the first formula in (26),but where we end up 
with the sum being 5 0. O 

PROOFOF LEMMA2.7: 
We will prove (1) by assuming the opposite and deriving a contradiction. 

Thus, we have, by Corollary 2.3 

If we sum (27)over j and add and subtract n - 1 we derive 

However, since (n - P>(a,,)(and similarly for (n  -l )yA= X&, C:=,,;, l)PAc),  
we can rewrite (28)as 

YA 
ZJ'=1 (- + 2;=+ P A C i l E i  l,i+j P!xa23> 

5 0 .  (29) 
P A C  

On the other hand we notice that for any probability distribution P we have 
C:=,,,, P(a,,) 5 yAng and C:=,,,, P(a2,)2 PAC,,. In particular, let P E [yAl in 
the first inequality of the previous sentence and then P E [PA,] in the second 
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inequality above. Then the formulas in the scope of the "j" summands of (29) 
are always non-negative. But the only way that (29) is possible, then, is if 

i (113 = YA,H, 2 pt ( 4  = PA.,, for all j = 1, . . . ,n. (30) 
z = =  I , L + J  z =  1 , n ‘ ~  

We can think of (30) as n linearly independent equations with n unknowns, 
which are the PI,(u,,)(similarly for P). Hence, [y,] forces unique values for each 
(PA(uIi)).But by Theorem 2.2, for all i there exists a P E [y,] such that P(a,,) 
= y,,,. Hence, yA = ?_,y,,r. We can then see that 

because A = (A f l  B) U (A f l  b,). Finally, we obtain a contradiction by using 
the assumption of Theorem 2.4 and Corollary 2.3 to obtain: 

Summing over i = 2, . . . ,n and using (31) we get: 

This contradicts (27). 
PROOFOF LEMMA2.8: 
We will prove (1) by assuming that @is a tiling of X without an upper 

dilator. By Lemma 2.7 we know that some Ek is a lower dilator. This Ek is not 
an upper dilator also because, if it were, {Ek,bk)would be a coarsened sub-
partition of the probability space which dilates A (i.e., Theorem 2.4 would be 
true). Pick out E,,' E @(it is unique because F is a tiling). Then, S = {Ek,qk) 
spans X with focus b,, and S contains no upper dilator. However, this directly 
contradicts Lemma 2.6. 

PROOFOF LEMMA2.9: 
Assume we have a covering of @using labels U, L, and N obeying 2.6 and 

2.8's restrictions. 2.6 and 2.8 say that there cannot be a focused span or tiling 
in qconsisting of all not-L labels or all not-U labels. Thus, if we arbitrarily 
change the N labels to U or L labels, we will have fewer restrictions of 2.6 
and 2.8 to obey. 

PROOFOF THEOREM2.4: 
We argue by assuming, in order to derive a contradiction, that there exists 

a labeling of qcontaining only U's and L's. This is sufficient given Lemma 
2.9. Define r,  = min, (number of L labels in 42,)and r ,  = min, (number of U 
labels in g.). Note that Lemma 2.8 applies to each so Y,, v, r 1. Without 
loss of generality assume that Y, 5 r,. Pick a such that (the number of L's 
in g . )  = Y,. Then, rearrange the indices of the b, so that the current f??, becomes 
42, and such that 



438 T. HERRON, T. SEIDENFELD, AND L. WASSERMAN 

= {El22 Ell, . . . ,ELm+,,Elm+2,. . . , El,} 
where all of the El,, j 5 m + 1 are labeled U, and El,, j > m + 1 are labeled 
L. 

For a contradiction we will pick out a spanning set Smof E, pairs which 
either focuses on b, or is a tiling and such that all the E, are labeled U. We 
define E3/E S, for decreasing j as follows: 

1)j = n: From qXchoose E,,, E S,, such that i,, = max,(E,, is labeled U). 
2 ) n > j 2 m  + 2: 
a) If there exists 1>j such that i, = j then choose E, E S ,and i,= 1. 
b) Otherwise choose E,, E S,,,where i,< j and i, = ma~,(E,~,is labeled U 

and i Z i, for all j + 1 5 1 5 n). 
By the case we are in, the construction is possible since for i > 1 there are 

at least r ,  E, E 9 labeled U, and r ,  2 r,  = n - m - 1 = the number of 
E,,'s we need to put into Smby our construction. 

Fact: No i, = 1 in the construction since 1 r m + 2, and we assumed that 
we rearranged the indices to get El,labeled L. 

Def ineJ=  (1 < j S m  + l [ j#  i,'forallm + 2 5 k 5 n ) .  
CLAIM: J f 0 
PROOF: First, from the case we are in we have n - m - 1 = v, 5 (n -

1)/2, and since r ,  = the number of L labels in g,.Thus, the number of U 
labels in = m 2 (n - 1)/2. Putting these together we get 

m 2 (n - 1112 2 n  - m - 1. (32) 
We saw that n-m-1 is the number of indices i, we defined in our construction 
of Sm,and IJI 2 m - (n - m - 1). If n is even we see that (n - 1)/2 is 
fractional, thus (32) becomes m > (n - 1)/2 > n - m - 1, and we end up 
with IJI 2 1. In the case when n is odd, we see as before that J # 0 unless, 
possibly, m = (n - 1)/2 = n - m - 1 = v,, and section 2) a) in our con-
struction of S,, is never used. However, by our Fact, we deduce that in this 
case there are only (n - 1)/2 - 1 = m - 1 columns in our table F to be 
matched up with the n - m - 1 = m indices i,' that are defined in the con-
struction. Thus, 2) a) must be used once in the construction. end of claim 

We now add Uj,,{E,,} to Sm.If IJI = 1, then Smis a tiling containing only 
E,'s labeled U. However, if IJI r 2, S,, is a span focused at b, containing only 
E,'s labeled U. 

PROOFOF LEMMA2.11: 

From the proof of Corollary 2.3 we have: A(A, {b,}) = '"I 

( Y o ,  + I P ~ ,  -

- (PA - P a  ). After this the Lemma follows by straightforward com-
POI, + Yo, 

putation using that the probabilities P, and P, can exist by 2.1 and 2.2. 
PROOFOF COROLLARY2.12: 
CovOlA, ~ b , )  = EAOlA - P(A))Olh, - P(bj))} = Ep{xa,, - P(A)P(bj)} = 

P(alJ) - (?=, P(al,))(P(alj) + P(a2,)) = &,(A, b,) after an easy calculation. 
PROOFOF LEMMA3.2: 
1. Assume that P(AB), P(AcB) < E. Then, from (6) we see that B strictly 

dilating A is equivalent to a. and b.: 
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a p(A) > _P(AIB)iff 

iff P(A) > e .  
b. P(A) < P(AIB)iff 

iff 1 - P(A) = P(Ac)< E. Thus, part 1 .  of the Lemma holds. 
2. When P(AB) < e 5 P(AcB) strict dilation is equivalent to c. and d.: 
c. p(A) > P(AIB) iff P(A) > E as in a. 
d. P(A) < P(AIB)iff 

because the assumption that P(Ac)2 P(AcB)2 e makes P(A) + e > 1 and 
P(AB) + E > 1 impossible when evaluating the max and min in the equation. 
Equivalently, we have e > (P(A)- P(AB)IP(B))I((lIP(B))- 1 )  iff E > -dp(A, 
B)IP(BC)iff E > P(Ac)(l - Sp(A: Be)).Hence part 2, of the Lemma holds. 

3. When P(AcB)< e 5 P(AB) strict dilation is equivalent to e. and f.: 
e. P(A) >P(AIB) iff P(A)(l - Sp(A,Be))< E by a proof analogous to that 

given in d. 
f. P(A) < P(AIB)iff E < P(A3 by the same proof given in b. 
4. When E 5 P(AB), P(AcB),the Lemma holds by the proofs in parts d. 

ande. 
PROOFOF THEOREM3.5: 
We assume that the theorem is false and derive various contradictions. 

Thus, we assume that we are given a partition z ,  = {C,, C,, . . . , C,,)which 
dilates the event A such that no coarsening {B,,B,, . . ,B,) of n, dilates A. 

We see from Case 4 of Lemma 3.2 that independence of any of the C,with 
respect to A is sufficient to cause the subpartition {C,,q)to strictly dilate A. 
So assume that none of the C, are independent of A (under P) and let z ,  = 

C+ U C- where C+ = {C,E n,lSp(A, C,) > 1 )  and C- = {C,E z,ISp(A, C,) 
< 1).W.1.o.g. assume that IC-I 2 IC+I and define k = IC+I.Also, assume that 
C+ = {C,,. . . ,C,) and C- = {C,,,, . . . ,C,) and define EL,= U{C, E (n, 
- { C ,  C,))) such that C, E C+and C, E C-. 

SUBCASE A: There exists i, j E ( 1 ,  . . . ,n) s.t. Sp(A,El,) < 1 .  From Lem-
mas 3.3 and 3.4 we see that Sp(A,C, U C,) > 1 because Ef, = C, U C,. Using 
the assumption that the subpartition {C,, C;c) cannot strictly dilate A, Lemma 
3.2 and the fact that all atoms have mass at least e imply that 
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F 5 P(A)(l - Sp(A,C,)) because C, E C-. ( 1 )  

Let z, = {C, ,. . . , C,_,, C,,,, . . . , Cj_,,C,,,, . . . , C,, C, U C,). Since this 
subpartition cannot strictly dilate A, we can use Lemma 3.2 to see that 

5 P(A)(l - Sp(A,E,)) using subcase A's assumption. (2) 

We can use Lemma 3.4 on ( 1 )  and (2) to come up with: 

E 5 P(A)(l - Sp(A,E, U C,)) = P(A)(l - S,(A, c)). (3) 

However, (3)contradicts the initial assumption we made that z,, and in par-
ticular C,,dilates A using Lemma 3.2 and that C, E C+. 

SUBCASE B: We have Sp(A,E,,) > 1 for all possible i, j. Note that the 
other possibility, that Sp(A, EL,) = 1 ,  cannot happen because if it did the 
subpartition (4,E,,) would strictly dilate A. The Lemmas 3.3 and 3.4 say 
that Sp(A,eJ)< 1 where c,= C, U CJfor all i E { I ,. . . ,k )  and j E {k + 
1 ,  . . . , n). Define F, = C, U C,+,'fori = 1 ,  . . . , k. This implies that S,(A, 
4) < 1 for all i = 1 , .  . . ,k. If we define F = Uil_,F,, then Sp(A,F )  < 1 by 
Lemma 3.4. Finally, since any element of z, in the complement of F (if such 
elements exist) are elements of C-,  we can use Lemmas 3.3 and 3.4 to see that 
Sp(A,Fc) < 1 ,  hence, Sp(A,F )  > 1 .  But the final inequality contradicts one a 
few lines up. 

PROOFOF COROLLARY3.7: 
The corollary for cases a. and d. is by simple calculation, as is A(A, {B,))  

2 0 oftentimes being equivalent to B, dilating A. 
PROOFOF LEMMA4.1 : 
To compute P(AIB,)we note that the probability distribution P,,, EPsuch 

that P,,,(ABJ = max{O, r + c, - 1 )  and P,,,(AB,) = cJ,( i  # j) provides the 
least mass possible on AB,. Similarly, P,,, E Psuch that P,,,(AB,) = min{r, 
c,) provides the greatest mass on AB, possible so that P(AIB,)is as in (7). 

PROOFOF THEOREM4.2: 
By the model and Lemma 4.1 we see that ?(A > f(AIB,) if and only if (two 

cases): c,r > max{O, v + c, - 1 )  iff 
case 1 :  re, > 0 if 0 > v + c, - 1.  
case 2: r(c, - 1 )  > c, - 1 if r + c, - 1 2 0. 
The condition in either case holds iff r and c, are anything except 0 and 1. 
Also, P(A) < P(AIB,)iff vc, < min{r, c,) which is the case iff r or c, are not 

0 or 1 because 0 5 v, c, 5 1 .  
PROOFOF THEOREM4.3: 
Because each B, strictly dilates A, Theorem 4.2 says that any coarsening 

including B, will have a marginal value of c 2 c, > 0. Also, the marginal value 
of A, r, stays fixed under the coarsening of a partition; hence we can apply 
Theorem 4.2 again to get our result if we remember that c f 1 in a nontrivial 
subpartition of B. 

PROOFOF PROPOSITION4.4: (Sketch) 
As in Lemma 4.1, to calculate P(AIB) we need to find a distribution Fthat 

minimizes the mass on AB: 
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But we note that since for all x, y, min{Fdx), F h ) }  r F(x,y) 2 max{O, FAX)
+ F&J) - 1) (Dall'Aglio 1972), the calculation is nearly identical to that in 
4.1 and 4.2. It appears that 4.3 holds for any open sets A and B. 

PROOFOF LEMMA5.1.2: 
Let z = p(A): Without loss of generality assume that A = [O, z]. Let tB = 

p(A n B) and u, = p(Ac n B). Balance implies that t$z = u$(l - z) which 
implies that u$t, = (1 - u, - z)/(z - t,). Choose f E (A), and let F(o) = 

Stf*(t)p(dt>.Now, 

$'-*a f* - F(l - u,) - F(z)
>Z--

Szf* F(z) - F(tB) 
. (33) 

By Lemma 5.1. l ,  with a, = t,, a, = z, a, = 1 - u,, we have F(t,)l(F(t,) + 
1 - F(l - u,)) 5 F(z). SO, 

P(AIB) 5 inf{P(AIB); dPldp E Am} 5 F(t,)l(F(t,) 
+ 1 - F(l - u,)) 5 F(z) = f'(A). 

BYa similar argument, P(AIB)2 F(A). 
PROOFOF LEMMA5.1.3: 
Choose t E (0, z) and let u = (1 - z)tlz. Thus, u E (0, 1 - z) and tlz = 

ul(1 - z). Let B = [0, t] U [I - u, I]. Then L? = {B, Bc} is balanced. Now 
apply the previous Lemma. 

PROOFOF LEMMA5.1.4: 
Suppose that 4, (A)$O(A) > 1. Let L? = {B, B }  be a weak, balanced, binary 

dilator. It can be shown that at least one inequality in (33) is strict. 
PROOFOF LEMMA5.1.5: 
The "if" direction follows from 5.1.4. Conversely, suppose that 40(A)+0(A) 

= 1. Without loss of generality assume that m is convex and closed with 
respect to the total variation topology (otherwise replace it with its convex 
closure and none of the upper and lower probabilities change). As shown in 
Wasserman and Kadane 1992, since P is 2-alternating and m is I-closed, there 
exists a densityf such that m is the closed, convex hull of {g; g if l.Let z = 

p(A), t, = p(A f l  B,) and u, = p(Ac f l  B,). From the form of m we have P(A) 
= fif* and f(AIB,) = j-3 f*l(J$ f* + St-,, f*). Dilation of the lower probability 
implies, by Lemma 5.1.1, that 

Iff, is constant almost everywhere on A and Ac then the above inequality 
implies that uJt, 2 (1 - u, - z)/(z, - t) i.e. zu, 2 t,(l - z). Summing over i 
and noting that Ct, = z, Cu, = 1 - z and that at least one of the inequalities 
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is strict, we get z(1 - z) > z(1 - z), a contradiction. So f ,  is not constant 
over at least one of A or Ac implying that #,,(A)@(A) > 1. 

PROOFOF LEMMA5.1.6: 
Constriction implies E(A) 5 _P(AIBJfor all i, strict for some i. This implies 

where ti = p(A f l  BJ,  ui = p(Ac n Bi), z = p(A), Cti = z and Xui = 1 - z. 
Now, sincef ,  is non-decreasing, ( z  - tJuf*(t,>f*(l- uJ is less than or equal 
to the left hand side of (34).Also, (1 - ui - z)t,f,(ti2f,(1- uJ is greater than 
or equal to the right hand side of (34).Thus, u,(z - ti) 5 ti(l - u, - z) for 
all i and summing over i and noting that the inequality is strict for some i we 
get ( 1  - z)z < ( 1  - z)z, a contradiction. 

PROOFOF LEMMA5.2.1: 
Let z = p(A) and assume without loss of generality that A = [0,z]. It is 

easy to see that for any P and B, since B belongs to a nontrivial partition, 
P(A1B) 2f, wheref = dPldp. Thus, P(AIB) 2 m, and max,,_P(AIB) m,. 
Hence, inf,,, max,, P(AIB) 2 m,. Next we show that we can get arbitrarily 
close to this lower bound. 

Let E > 0 and choose g E m such that m,, 5 g, < m, + e. 
Define C, = [(i - l)zln, izln) for i = 1 ,  . . . , n and Di = [ 1  - i(l - z)ln, 

1 - (i - 1) (1  - z)ln) for i; eq 2, . . . ,n and Dl = [ I  - (1 - z)ln, 11. Set B, 
= Ci U Di and let L?,, = {B,, . . . ,B,). Then mini I'(AIBJ = E(AIB,). Hence, 

max E(AIB) = E(AIB,)= inf Shl"f* 5 SAIn g 
BEB, f S;Inf* + Stn- l jh  f* Shtn g + Sin- l)/?z g' 

The last expression tends to go < m, + c: as n -+ a.A similar proof can be 
used for the other bound. 

PROOFOF LEMMA6.1: 
Sincep E M, 

where @ is the cumulative distribution function for the standard normal. 
PROOFOF LEMMA6.3: 
From a Theorem in Lavine, Wasserman and Wolpert 1993, it follows that 

P(A,IX, = x,) is the solution to the equation s(2) = 0, 0 5 d 5 1, where s(2)-
= infPEMJ hhdP, h,(u) = L(co)(lAn(u)- A) and L is the likelihood function. 
Here, I, represents the indicator function for the set A. So it suffices to identify, 
for every A,the member P E A4 that minimizes J h, dP. And for this, it clearly 
suffices to find the member u E S that minimizes J h,v,dp. 

Define un(u)  = q,b(h,(t) > h,(w)))where q,(Q) = (1 - a)(l - @)-a is the 
increasing rearrangement ofp,. By construction, u, -pa. There exists b such 
that g = h, + b is nonnegative. Let z = sup g <a,let ~,(du)\ = q,(w)p(dw) 
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and let R,(dw) = r,(w)p(dw). Since q, is the increasing rearrangement, we 
have that, for any P such that dP/c& E &', S h, dP = jg dP - b = S f ,  P(g > 
t)dt - b 2 S f ,  Q,(g > t)dt - b = J$ R,,(g > t)dt - b = S g dR, - b = S h, 
dR, This confirms that R, is the appropriate minimizer. Finally, note that by 
the definition of r,, the stated conditions on r, follow for all A. CI 

PROOFOF LEMMA6.4: 
After some algebra applied to 6.3, we have that 

where m(x,) = S L,,(B)p(dO)-+ 1. From ( l l ) ,p(A,IX, = x,) stays bounded 
away from 0. Similarly, from (1I), JAm L,r, 5 sup,,, v, = 1 - a < a. 

PROOFOF LEMMA6.5: 
It suffices to consider I, = SLz8+,L,(B)r,(B)dB since the integral over A, is 

O(1) and the integral to the left of .x, - a, behaves the same as I,. Changing 
variables we have 

- 1 -xn -a,, 

= ,/n exp( -na:/2) exp( -nu2/2)exp{-nua,) u-ndu. 

By another change of variables ( t  = nu2/2)I, is proportional to 

J, = exp { -r ~ a ~ / 2 ) n ~ / ~  

Now suppose that (13) holds. So the inequality is strict for some k > 0. It 
follows that lirn [ d 2  - na:l(2 log n)  - k&a,l(2 log n)]> 0 so that 

where b = k2/8 > 0. Since X,,-+0 almost surely and a, = o( l ) ,we conclude 
that liln n(1 - X,, -. aJ2/22 b a s .  so that 

where z = j-6 e-'8'-a2-ldt > 0. It follows that lim J,, = oo almost surely. 17 
PROOFOF THEOREM6.6: 
If d < a then (13) holds and the conclusion follows from Lemma 6.5. If d 

2 a then lim n,a'ze-na2/2> m. Since, J, 5 C, = exp{ -nay2)nd2r((l  - a)/2), 
the conclusion follows. 
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